Censored quantile regression with recursive partitioning-based weights.
نویسندگان
چکیده
Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recently, Wang and Wang (2009. Locally weighted censored quantile regression. Journal of the American Statistical Association 103, 1117-1128) proposed a locally weighted censored quantile regression approach that allows for covariate-dependent censoring and is less restrictive than other censored quantile regression methods. However, their kernel smoothing-based weighting scheme requires all covariates to be continuous and encounters practical difficulty with even a moderate number of covariates. We propose a new weighting approach that uses recursive partitioning, e.g. survival trees, that offers greater flexibility in handling covariate-dependent censoring in moderately high dimensions and can incorporate both continuous and discrete covariates. We prove that this new weighting scheme leads to consistent estimation of the quantile regression coefficients and demonstrate its effectiveness via Monte Carlo simulations. We also illustrate the new method using a widely recognized data set from a clinical trial on primary biliary cirrhosis.
منابع مشابه
Censored Quantile Regression with Auxiliary Information
In quantile regression of survival data, the estimation of the regression coefficients for extreme quantiles can be affected by severe censoring. Measurement error in covariates also leads to bias and loss in efficiency of estimators. In this seminar, we discuss the methodologies that effectively use the auxiliary information to improve the efficiency of censored quantile regression estimators....
متن کاملLocally Weighted Censored Quantile Regression
Censored quantile regression offers a valuable supplement to Cox proportional hazards model for survival analysis. Existing work in the literature often requires stringent assumptions, such as unconditional independence of the survival time and the censoring variable or global linearity at all quantile levels. Moreover, some of the work use recursive algorithms making it challenging to derive a...
متن کاملNonparametric estimation of conditional quantiles using quantile regression trees
A nonparametric regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning of the covariate space is investigated. Unlike least squares regression trees, which concentrate on modeling the relationship between the response and the covariates at the center of the response distribution, our quantile...
متن کاملSelf-consistent estimation of censored quantile regression
The principle of self-consistency has been employed to estimate regression quantile with randomly censored response. It has been of great interest to study how the self-consistent estimation of censored regression quantiles is connected to the alternative martingale-based approach. In this talk, I will first present a new formulation of self-consistent censored regression quantiles based on sto...
متن کاملComposite Quantile Regression for Nonparametric Model with Random Censored Data
The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2014